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Abstract We investigate the contact process on random graphs generated from
the configuration model for scale-free complex networks with the power law exponent
β ∈ (2, 3]. Using the neighborhood expansion method, we show that, with positive
probability, any disease with an infection rate λ > 0 can survive for exponential time in
the number of the vertices of the graph. This strongly supports the view that stochastic
scale-free networks are remarkably different from traditional regular graphs, such as Zd

and classical Erdős-Rényi random graphs.
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It is observed that many networks, such as the Internet, World Wide Web, the
scientific collaboration network, social networks etc, have scale-free structures in the
sense that the degree distribution of these networks follows a power law [1], i.e. the
probability of a randomly chosen node having k neighbors is asymptotically equal to
k−τ for some constant τ > 0 independent of k. Since the appearance of Barabási-
Albert’s paper [1] on the scaling law of degree sequences of complex networks, many
research works were carried out in this cross-disciplinary field. A great deal of studies,
both rigorous and non-rigorous, have been made to capture and describe the detailed
structural properties of such networks with a power law degree distribution. Many
random graph models have been proposed besides the Barabási-Albert’s original pref-
erential attachment model. However, thus far, there are much less works on the effect
of the topology of these scale-free structures on stochastic processes taking place on
these networks, such as the spread of viruses on the Internet.

The contact process, or the susceptible-infected-susceptible(SIS) model in physics
literature, is usually used in the study of the spread of some virus on network structures
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[2, 3, 4]. In this process, a vertex of the graph is either infected or healthy (but suscep-
tible) at any time. A healthy vertex is infected with rate proportional to the number
of its infected neighbors, and an infected vertex recovers with rate one independently
of the status of its neighbors.

The contact process has been studied intensely in the mathematical community [5],
but it is usually considered on homogeneous graphs or nonhomogeneous graphs with
bounded-degree. The fundamental results in those studies are concerned with phase
transitions, i.e. there are thresholds 0 < λ1 ≤ λ2 of the infection rate λ on an infinite
graph. If λ > λ2, then with positive probability the disease can spread and infect every
vertex of the graph infinitely often. If λ1 < λ < λ2, then the disease can survive with
positive probability but infects every vertex of the graph for finite times only. If λ < λ1,
then the disease dies out almost surely. It turns out that λ1 = λ2 for Zd and λ1 < λ2

for regular tree Td with d ≥ 3. See [5] for details.
In physics literature, as far as we know, Pastor-Satorras and Vesignani [2, 3] were

the first group to study contact processes on scale-free networks. They argued that
the thresholds of the contact processes on scale-free networks are zero by applying
simulation and (non-rigorous) mean-field methods.

In this paper, the contact process on scale-free structures is defined based on the
Chung and Lu’s random graph model [6]. It will be rigorously proven by neighborhood
expansion tools that, with positive probability, the disease with any positive infection
rate λ will survive on power law graph with exponent β ∈ (2, 3]. So the threshold of
the contact process is exactly zero. This shows the contact process on conventional
concrete structures are dramatically different from that on scale-free structures which
are heterogeneous and have vertices with unbounded degrees.

This paper is organized as follows. In Section 1, we present the main results after
the definitions of the power law random graphs and the contact process. In Sections
2 and 3 we prove the main results introduced in Section 1. For convenience, c is a
positive constant which may be changed from line to line.

1 Models and Main Results

1.1 Power Law Random Graphs

We consider graphs with n vertices and take V = {1, 2, · · ·, n} to be the vertex
set. Let w = (w1, w2, · · ·, wn) be a sequence of nonnegative integers for each integer
n > 0 and d = (

∑n
i=1 wi)/n be the arithmetical average of these integers. Assume

max1≤i≤n w2
i < nd. Let G(w) be the set of all graphs with vertex set V in which the

edge joining vertex i and j appears independently and with probability

pij =
wiwj∑n
i=1 wi

.

In particular, we focus on the power law case throughout this paper that

wi = ci
− 1

β−1 , i0 ≤ i ≤ i0 + n, (1)
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where
c =

β − 2
β − 1

dn
1

β−1 , and i0 = n(
d(β − 2)
m(β − 1)

)β−1.

m is the minimum degree and β > 1 is called the exponent of the power law. We shall
say that almost surely a random graph G in G(w) has property Q if P(Q) → 1 as
n → ∞, in which P(·) is the probability measure corresponding to the random graph
model G(w). A fundamental phenomenon in the model G(w) is that almost surely
there is a unique giant component whose volume is much larger than the volume of any
other component (see Lemma 2.4). For more details we refer to [6, 7, 8].

1.2 The Contact Process

The contact process is usually studied as a model of spreading some disease. Intu-
itively, a vertex is either infected or healthy. Waiting for exponential time with mean
one, an infected vertex becomes healthy independent of other vertices. During its in-
fection time, a vertex infects its healthy neighbors at rate λ > 0. So a healthy vertex
would be infected at rate proportional to the number of its infected neighbors.

Formally, the contact process with infection parameter λ on graph G(V,E) is a
continuous-time Markov process {ηt; t ≥ 0} which can be identified at time t by
subset At = {v ∈ V; ηt(v) = 1} of V. The vertices in At are regarded infected and the
rest are considered as being healthy. The transition rates of ηt are defined by

A → A \ {v} for v ∈ A at rate 1

and
A → A ∪ {v} for v /∈ A at rate λ | {u ∈ A; {u, v} ∈ E} |

where {u, v} denotes the edge joining vertices u and v.
For more details, please refer to [5]. Usually, one vertex is infected at time t = 0.

It is known that the contact process becomes healthy eventually on any finite graph.
Consequently, one would like to study the typical behavior of the extinction time of
the contact process on finite graphs.

Let σn = inf{t ≥ 0,At = ∅} be the extinction time of the contact process on a graph
with n vertices. As in [5], the extinction time of the contact process in {1, · · ·, n}d

grows exponentially in the number of the vertices, i.e. σnd ∼ exp(cnd) for some c > 0
independent of n in the supercritical region of the contact process in Zd, but σnd ∼
c1 lnn for some c1 > 0 when λ is less than the threshold of the process in Zd.

We call the contact process becomes an epidemic if σn increases exponentially as the
number n of the vertices of the graph increases.

1.3 Main Results

As we will show in Lemma 2.4, almost surely there is a unique giant component in
random graph G of G(w). So we just run the contact process on that giant component
and ignore other cases.
Theorem 1. For every 1 À λ > 0, there exists N such that for a typical sample of
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the power law random graph with exponent 2 < β < 3 of size n > N , if vertex vn is
chosen uniformly in the giant component, then, an infection starting at vn will become
an epidemic with probability bounded below by

λc ln(λ−1)

for some constant c > 0.
Theorem 2. For every 1 À λ > 0, there exists N such that for a typical sample of the
power-law graph with exponent β = 3 of size n > N , if vertex vn is chosen uniformly
in the giant component, then, an infection starting at vn will become an epidemic with
probability bounded below by

λ
c

ln(λ−1)

ln ln(λ−1)

for some constant c > 0.
Remark. Noam Berger et al [9] proved that the same lower bound on the survival
probability in the case of the Barabási-Albert model in which the exponent of the power
law degree sequence is 3. Another work has been done by A. Ganesh et al [10]. Con-
sidering the contact process on several kinds of graphs including the power law random
graphs, they proved similar results but paid little attention to the survival probabil-
ity. For power law random graphs with exponent β > 3, the following conjecture first
appeared in the physical literature and was also proposed by Rick Durrett [8].
Conjecture: If β > 3, then λc > 0, where λc is the threshold of infection rate such
that the contact process on the power law random graph with rate λ > λc will become
an epidemic.

2 Proof of Theorem 1

The proof of Theorem 1 is divided into three steps. First, we apply the neighborhood
expansion tools to prove Proposition 2.5 which asserts that one can find a vertex of large
degree in a small neighborhood of any uniformly chosen vertex in the giant component.
Second, we can find a short path from this vertex to another vertex whose degree is at
least nγ for some constant γ > 0. Finally, we consider the contact process on this path
and show the disease persists around the end vertex of the path for long time.

Let S be a subset of vertices, i.e. S ⊂ V. For k ≥ 1, define the k-th moment of
the expected volume by Volk(S) =

∑
vi∈S wk

i . For k = 1, write Volk(S) = Vol(S) for
convenience. Recall that Vol(G) =

∑n
i=1 wi = nd where d = n−1

∑n
i=1 wi > 1. Define

Γ(S) = {v ∈ V : v ∼ u and v /∈ S}.
Lemma2.1. (Lemma 2 of [6]) In a random graph G ∈ G(w), for any two subsets S
and T of vertices,

P
(
Vol(Γ(S) ∩ T) ≥ (1− 2ε)Vol(S)

Vol2(T)
Vol(G)

)
≥ 1− e−c,

provided Vol(S) satisfies

2cVol3(T)Vol(T)
ε2Vol22(T)

≤ Vol(S) ≤ εVol2(T)Vol(G)
Vol3(T)

. (2)
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Let d(S,T) = min{d(u, v), u ∈ S, v ∈ T} be the distance between S and T.

Lemma 2.2. (Lemma 3 of [6]) For any two disjoint subsets S and T of vertices with
Vol(S)Vol(T) > cVol(G),

P(d(S,T) > 1) < e−c.

Lemma 2.3. (Lemma 4 of [6]) Suppose that G ∈ G(w) of n vertices such that for a
fixed value c > 0,G has o(n) vertices of degree less than c. For any fixed vertex v in
the giant component, let S = {v}, Γ1(S) = Γ(S) and Γi(S) = Γ(Γi−1(S)) for i > 1. If
τ = o(

√
n), then there is an index i0 ≤ c0τ such that

P(Vol(Γi0(S)) ≥ τ) ≥ 1− c1τ
3/2e−c2τ ,

where c0, c1, c2 are constants depending only on c and d = n−1
∑n

i=1 wi > 1.
Lemma 2.4.(Theorem 1.3 of [11]) Suppose that G ∈ G(w). If d = n−1

∑n
i=1 wi > 1,

then the following statements hold.

1. Almost surely G has a unique giant component. Furthermore, the volume of the
giant component is at least (1 − 2/

√
de + o(1))Vol(G) if d ≥ 4/e, and is at least

(1− (1 + ln d)/d + o(1))Vol(G) if d < 2;

2. All other components almost surely have volume at most O(logd n).

The first three lemmas, usually called the neighborhood expansions, are useful tools
to prove facts about short diameters of connected graphs. Now we prove a propo-
sition by applying these lemmas. The k-neighborhood of some vertex v is the set
{u ∈ V ; d(u, v) ≤ k} of vertices.

Proposition 2.5. For sufficiently small λ and for Gn ∈ G(w) with exponent 2 < β < 3,
with probability at least 1−O(exp(cλ−2(3−β))) for some constant c > 0, the O(lnλ−1)-
neighborhood of a randomly chosen vertex vn in Gn contains a vertex with degree larger
than λ−2.

Here is an observation leading to the above proposition and its proof. Note that
the diameter determines how far the distance between a typical pair of vertices of the
graph. We know by [12, 6] that the average distances of the power law random graphs
with n vertices have the form of ln lnn for exponent β ∈ (2, 3). Intuitively, when λ is
small enough, the O(lnλ−1)-neighborhood will be similar to the whole random graph
G ∈ G(w) which has vertices of large degrees. Therefore we can apply the neighborhood
expansion lemmas to find the desired vertex of large degree in some j-neighborhood
with small j. First, we show that some i-neighborhood of vn will grow “large” enough
by Lemma 2.3. Second, applying Lemma 2.1 to prove the neighborhood of the i-
neighborhood of vn will grow exponentially fast. Finally, after at most O(lnλ−1) steps,
the volume of reachable vertices is large enough to reach the desired vertex of large
degree with another step.
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Proof of Proposition 2.5. Recall (1) and note that the minimum expected degree of
the degree sequence is

wmin = (1 + o(1))
d(β − 2)
β − 1

.

Define T = {νi ∈ V; wi ∈ [wmin, awmin]} where a = ln ln(λ−1). A little calculation yields
that

Vol(T) ≈ nd(1− a2−β),

Vol2(T) ≈ nd2(1− 1
β − 1

)2
β − 1
3− β

a3−β , and

Vol3(T) ≈ nd3(1− 1
β − 1

)3
β − 1
4− β

a4−β .

Let S be i-th neighborhood of vn, consisting of all vertices within distance i from vn.
Choose

c = ln ln(λ−1), ε = 1/4, τ = aβ.

By Lemma 2.3, there are constants c0, c1, c2 and an index i0 ≤ c0τ such that

P(Vol(Γi0(vn)) ≥ τ) ≥ 1− c1τ
3/2

ec2τ
.

Then (2) is satisfied. By Lemma 2.1, with probability at least

1− e−c = 1− e−a = 1 + (lnλ)−1,

the volume of Γi(vn) for i > i0 will grow at rate greater than

(1− 2ε)
Vol2(T)
Vol(G)

= (1− 2ε)
d(β − 2)2

(3− β)(β − 1)
a3−β .

After at most 4 ln(λ−1)
(3−β) ln a = o(lnλ−1) steps, the volume of the set of reachable vertices is

at least

[
d(β − 2)2

2(β − 1)(3− β)
a3−β ]

4 ln λ−1

(3−β) ln a ≥ λ−4.

To apply Lemma 2.2, let T̃ = {vi;wi ≥ λ−2}. If wi ≥ λ−2, then i ≤ i0 where i0 =
n[λ2d(β − 2)/(β − 1)]β−1. It follows that

Vol(T̃) =
bi0c∑

i=0

wi ≈
∫ i0

1

β − 2
β − 1

(
n

x
)

1
β−1 dx ≈ nλ2(β−1)(

β − 1
d(β − 2)

)2−β.

We denote ρ = 2(3− β) > 0 for β ∈ (2, 3). Then

Vol(T̃)λ−4 ≈ dnλ−ρ(
β − 1
β − 2

)2−βdβ−3 ≥ cVol(G)λ−ρ.
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Lemma 2.2 implies that a vertex with degree larger than λ−2 can be reached in one
additional step with probability at least 1− exp(−cλ−ρ). The total number of steps is
at most

c0τ + O(ln(λ−1)) + 1 = O(ln(λ−1)).

The total probability of failure is at most

c1a
3β/2

ec2aβ + e−a + e−cλ−ρ
= O(e−cλ−ρ

) < ε0,

for fixed ε0 and small λ. This completes the proof.

To complete the proof of Theorem 1, we need the following lemmas.
Lemma 2.6. With probability at least 1−exp(−cλ−ρ), the vertex u(1) chosen in Propo-
sition 2.5 has a neighbor u(2) with degree larger than (1+ ε̃)λ−2 for fixed ε̃ ∈ (0, 1), and
constant c > 0 depending on ε̃, d and β only.

Proof. Let {u(1) ∼ ui} be the event that u(1) is joined with ui by an edge. According
to the definition of the power law random graph, all the events of this kind are mutually
independent.

P(u(1) is connected with a vertex of degree larger than(1 + ε̃)λ−2)

=1− P(∩i0
i=1{u(1) ∼ ui}c) = 1−

i0∏

i=1

P({u(1) ∼ ui}c)

=1−
i0∏

i=1

(1− wu(1)wui

nd
) = 1− exp(−wu(1)

i0∑

i=1

wui

nd
) + o(1)

≥1− exp(− 1
λ2

i0∑

i=1

(1 + ε̃)λ−2

nd
) = 1− exp(−cλ−ρ).

for some constant c > 0, where

i0 = bn[λ2 d(β − 2)
(β − 1)(1 + ε̃)

]β−1c

is the smallest integer i such that wi ≥ λ−2(1 + ε̃) for fixed ε̃.

By the same argument as above and by induction we can get the following lemma.

Lemma 2.7. Fix ε̃ ∈ (0, 1). Suppose we have found the vertices u(1), u(2), . . . , u(j) such
that the degree of u(i) ≥ (1 + ε̃)i−1λ−2 and u(i) ∼ u(i−1) for all j ≥ i ≥ 2. Then with
probability at least 1 − exp(−cλ−ρ), a neighbor u(j+1) of u(j) can be found such that
the degree of u(j+1) ≥ (1 + ε̃)jλ−2.

The following lemma is about the contact process on a star-shaped graph. It shows
that with high probability the contact process on a star-shaped graph will survive for
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a exponential time in the number of the leaves of the star.

Lemma 2.8. (Lemma 5.3 of [9]) Let G be a star-shaped graph, with center x and n
leaves. Let λ be the parameter of the contact process on the star-shaped graph. λ → 0
and λ2n →∞ as n →∞. Let At be the set of vertices infected at time t. Suppose that
A0 = {x}. There exists a constant c > 0 such that

P(σn+1 ≥ exp(cλ2n)) = 1− o(n).

Proof of Theorem 1. By Lemmas 2.6 and 2.7, with probability at least [1−exp(−cλ−ρ)]c ln n,
there exists a path from vn to some vertex u with degree larger than (1 + ε̃)c ln nλ−2.

By Proposition 2.5 there exists a path v(1) = vn, v(2), . . . , v(k0) = u(1) for k0 =
O(lnλ−1), starting at vn and ending at u(1). Compare the contact process with a jump
process restricted to this path starting at vn. At each jump, the infection can reach
the next vertex of the path with probability λ/(1 + λ). Then, with probability

(
λ

1 + λ
)k0 ≥ λ−c ln λ

for some constant c > 0, the infection will reach u(1).
Conditioned on the event that the infection reaches u(1), by iterative applications of

Lemma 2.8, with probability bounded away from zero, the infection will reach u(c ln n),
and by another application of Lemma 2.8, the disease will survive up to time at least

exp(cλ−2(1 + ε̃)c ln n) = exp(nγ),

for some constant γ > 0. Thus, the infection becomes an epidemic.

3 Proof of Theorem 2

The strategy of proving Theorem 2 is very similar to that of Theorem 1. But the
difference between the exponents of power law distributions in two cases leads to the
following subtle modifications. We have to prove a proposition which is the analogy of
Proposition 2.5.
Proposition 3.1. For sufficiently small λ and for the power law random graph Gn with
exponent β = 3, with probability at least 1−O(exp(−cλ−1)) for some constant c > 0,
the O(lnλ−1/ln lnλ−1)-neighborhood of a randomly chosen vertex νn in Gn contains a
vertex with degree larger than λ−2.

To prove Proposition 3.1, we first prove some lemmas.
Lemma 3.2. Randomly pick a vertex vn in the giant component, with probability
at least 1 − (lnλ−1)−3, the volume of Γi0(vn) is at least (ln ln λ−1)6 for some i0 =
O((ln lnλ−1)6).

Proof. Let τ = (ln lnλ−1)6. The claim follows directly from Lemma 2.3.

Lemma 3.3. (Lemma 7 of [6]) Suppose that S is a subset of vertices, β = 3, ε < 1/2
and c > 0. If

4c
t

d
(εln

2t

d
)−2 < Vol(S) ≤ n2/3,
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then

P
(

Vol(Γ(S))
Vol(S)

> (1− 2ε)
d

2
ln

2t

d

)
≥ 1− e−c.

Lemma 3.4. Suppose that S is a subset of vertices and Vol(S) ≥ (ln lnλ−1)6. Let
Γ0(S) = S, and define inductively that Γk+1(S) = Γ(Γk(S)). Then

P (Vol(Γi(S)) > λ−5) ≥ 1− o((lnλ−1)−2)

if i ≥ c(lnλ−1)/(ln lnλ−1).

Proof. We adopt the same approach in the proof of Claim 6 in [6]. Define a sequence
{ai; i ≥ 1} recursively as follows. Let a0 be some number larger than (ln lnλ−1)6.
Define ai+1 = (d/10)ai ln ai for i ≥ 1. Note that ai+1 > ai, and ai ≥ (ln lnλ−1)6.
Furthermore

ai ≥ (i + s)i+s, for s = exp(10e/d) and for any i ≥ 0. (3)

We shall prove this claim later. Choose

ε = (ln lnλ−1)−1, c = (ln lnλ−1)2, and t = (ln
ε2ai

2c
)2dε2ai/(4c).

Inductively, suppose Vol(Γi(S)) ≥ ai for some i ≥ 0. Note that

2t/d

ln2(2t/d)
=

ε2ai

2c

ln2 ε2ai
2c

(ln ε2ai
2c + 2 ln ln ε2ai

2c )2
≤ ε2ai

2c
≤ ε2

2c
Vol(Γi(S)).

Hence by Lemma 3.3 and by inequality (3),

P
(

Vol(Γi+1(S)) ≥ (1− 2ε)ai
d

2
ln

2t

d
≥ d

10
ai ln ai = ai+1

)
≥ 1− exp(−c).

Let i = (1 + o(1))(lnλ−5)(ln lnλ−5)−1. Then

Vol(Γi(S) ≥ ai ≥ (i + s)i+s ≥ eln λ−5−o(ln λ−5) = λ−5 + o(1).

This is the desired conclusion of Lemma 3.4.

Proof of Inequality (3). First, a0 = (ln lnλ−1)6 ≥ ss by the fact that s is bounded and
λ can be small enough. We now proceed by induction and assume that the claim holds
for ai. Then

ai+1 =
d

10
ai ln ai ≥ d

10
(i + s)i+s ln(i + s)i+s

=
d

10
(1− 1

i + s + 1
)i+s+1(i + s + 1)i+s+1 ln(i + s)

≥ (i + s + 1)i+s+1.

Therefore ai ≥ (i + s)i+s for i ≥ 0.
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Proof of Proposition 3.1. Combining Lemma 2.2 and Lemma 3.4, the same arguments
used in the proof of Proposition 2.1 yield that, a vertex of degree larger than λ−2 can
be reached by one additional step with probability at least 1−e−c/λ. The total number
of steps is at most

O((ln lnλ−1)6) + O(
lnλ−1

ln lnλ−1
) + 1 = O(

lnλ−1

ln lnλ−1
).

The total probability of failure is at most

c1τ
3/2

ec2τ
+ O(

1
ln2 λ−1

) + e−c/λ = O(e−c/λ).

This completes the proof.

Proof of Theorem 2. Applying Proposition 3.1, the same arguments used in the proof
of Theorem 1 lead to Theorem 2, with k0 = O( ln λ−1

ln ln λ−1 ) instead.

Discussions and a Question

In the proof of Theorem 1, we showed the probability that there is a path from u(1)

to some vertex with degree larger than (1 + ε̃)c ln nλ−2 bounded below by

[1− exp(−cλ−2(3−β))]c ln n,

which tends to zero as n →∞. In [10], A. Ganesh et al used the fact that the probability
that an infection starting from a randomly infected vertex spreads to the maximum
degree node is at least O(n−c ln n) for some constant c > 0 independent of n. Our
estimation is stronger than it. Berger et al [9] proved that with probability at least
1/4 such a path can be found in Barabasi-Albert’s model, which is independent of the
number of the vertices of the graph. So a consequent question is as follows. Is there
a path with its length less than c lnn from u(1) to some vertex with degree larger than
O(λ−2(1 + ε̃)c ln n) as n →∞?
Acknowledgement: The authors wish to thank the referee for helpful comments.
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